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SUMMARY

High-resolution methods have produced the ability to conduct large eddy simulations without the bene�t
of an explicit subgrid model. This capability is known as implicit large eddy simulation (ILES). A
number of high-resolution methods have been shown to have this property. There are notable exceptions
where high-resolution method do not work as ILES, particularly methods that have a leading O(h2)
dissipative term. On the other hand, MPDATA is an e�ective ILES method with a leading O(h2)
dissipative term. This dichotomy has played a key role in the discovery of the key role of conservation
or control volume form in producing ILES results. In the process of this analysis, I describe a variant of
the method leading to a useful alternative form of sign-preserving limiters. This form is proposed as an
extension of the basic MPDATA methodology allowing some �exibility in the choice of e�ective high-
order methods. This multistage version of the algorithm removes the leading order nonlinear dissipative
error. I rediscover the recursive form of the MPDATA iteration through modi�ed equation analysis
(MEA). Finally, returning to the original purpose of the analysis, I describe how the di�erent principles
used in MPDATA have been an important contributor to the recent theoretical understanding of ILES.

MPDATA is compared with monotone high-resolution methods both analytically and computation-
ally. The numerical comparison focuses on the validation of ILES methods for high Reynolds number
decaying isotropic turbulence. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION TO IMPLICIT LARGE EDDY SIMULATION (ILES)

High-resolution methods are characteristically nonlinear in the coe�cients used to de�ne
the di�erence stencil [1, 2]. This means that the stencil de�ned by the method is a function

∗Correspondence to: W. J. Rider, Los Alamos National Laboratory, Applied Physics Division, MS F699, Los
Alamos, NM 87545, U.S.A.

†E-mail: rider@lanl.gov

Contract=grant sponsor: Los Alamos National Laboratory; contract=grant number: W-7405-ENG-36

Received 30 March 2005
Revised 13 July 2005

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 17 July 2005



1146 W. J. RIDER

of the solution rather than being �xed coe�cients even for solving linear equations. Generally,
the solutions produced by high-resolution methods are nonoscillatory. The use of nonoscilla-
tory methods has been a major revolution in computational physics and opened many new
vistas for numerical simulations including turbulence. The criteria used to de�ne the nonlin-
ear coe�cients of the stencil determine the characteristics of each method. The MPDATA
method [3] is distinguished by using a di�erent mechanism to determine the nonlinear stencil
coe�cients than other high-resolution methods. The procedure used to de�ne the stencil uses
the concept of upwinding the numerical error as compared with the basic upwind method
(donor cell di�erencing). MPDATA can also be applied iteratively in multiple steps, an-
other clear methodological di�erence. MPDATA is a sign-preserving method (positive-de�nite
solutions are maintained). This di�ers from the property of monotonicity used to de�ne non-
linearity with many other high-resolution methods.
Despite these clear di�erences, MPDATA has been demonstrated to be e�ective on large-

scale simulations including turbulent �ows through the technique of implicit large eddy simu-
lation (ILES), a property of many other high-resolution methods [4–13]. Originally a number
of researchers had independently come to the conclusion that their high-resolution methods
produced e�ective LES simulations. In these original works on ILES all of the methods used
shared monotonicity-preservation as a common thread [4, 5]. This resulted in the original ter-
minology for this simulation approach as MILES for monotone-integrated LES. More recently
this relatively common observation has led to the search for unifying principles to explain
this good fortune. I report on how the unique design of the MPDATA method helped to
provide evidence on the essential elements of ILES leading to the results seen by many re-
searchers. Key to this study has been the di�ering nature of MPDATA from other methods that
has removed the focus from monotonicity as the seminal property of the methods for ILES.
Instead this focus has been placed on conservation form and nonlinear stability resulting from
a broader de�nition of nonoscillatory di�erencing [7–11].
Large eddy simulation (LES) is a turbulence simulation approach where only the large

scales of the �ow are simulated and the e�ects of small scales associated with viscous dis-
sipation are modelled. LES originated in the weather simulation community with the work
of Smagorinsky [14] who produced the classical and archetypal LES subgrid model based
on an extension of Von Neumann–Richtmyer shock viscosity [15]. The state-of-the-art in
LES has now been extensively developed as documented by Sagaut and Germano [16] and
other recent surveys [17, 18]. Traditionally, LES requires high-accuracy, low-dissipation nu-
merical integration for the �uid equations so that numerical errors do not interfere with the
modelling. Unfortunately, LES simulations are limited in applicability to (nearly) incompress-
ible turbulence and simulations where the mesh density is close to that required to con-
duct a direct numerical simulation of the �ow where the viscous dissipation is completely
resolved.
These limitations can be overcome with a newer and philosophically distinct approach to

simulating turbulence. The ability of some numerical methods to produce large eddy sim-
ulations without explicit models was �rst identi�ed by Boris [4] who dubbed the approach
MILES for monotone integrated LES. The method Boris used, FCT is based on a monotonicity
principle. Soon other researchers reached the same conclusions with similar, but with di�erent
methods. The common thread in all these methods was the use of monotonicity-preservation
in the methods loosely referred to as high-resolution methods. During the later part of the
1990s calculations with a di�erent, but related method began to evidence the same behaviour
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MPDATA AND HIGH-RESOLUTION METHODS 1147

as MILES. This method was MPDATA. The problem was that this method is not mono-
tone, it is sign preserving, a di�erent design principle than monotonicity. The nonlinearity
of the scheme used to enforce sign-preservation makes MPDATA a high-resolution method.
It gradually became clear that the term MILES was too restrictive because of its basis in
monotonicity, and ILES was born. There was also the mystery of what uni�ed the methods
with this property. As I will show, the diversity represented by MPDATA allowed us to more
easily unravel some of the secrets of ILES.
Because MPDATA is so di�erent from other high-resolution methods, analysing its e�ec-

tive model in comparison to other methods provides a path towards understanding the ability
of all high-resolution methods to model turbulent �ows. We have conducted a systematic
analysis of high-resolution methods using the technique of modi�ed equations [7, 19]. The
modi�ed equation analysis is particularly well suited towards uncovering the nonlinear struc-
ture of a method. MPDATA produces a strong dissipation at O(h2) with a structure like
that of Von Neumann–Richtmyer arti�cial shock viscosity [20]. This method is the orig-
inal nonlinear (high-resolution) method. The ILES capability of MPDATA should not be
surprising as the Smagorinsky LES model is an extension of the original arti�cial shock
viscosity [15].
Some other high-resolution methods with O(h2) dissipation are too dissipative for ILES.

These methods are typi�ed by the minmod limiter that will be analysed in the next sec-
tion. Most high-resolution methods used successfully with ILES have O(h3) dissipation with
stronger dissipation being triggered by monotonicity violations that indicate a locally under-
resolved �ow [21]. Monotonicity violations trigger dissipative mechanisms that are O(h) like
upwinding. MPDATA is also a conservation form (control volume) method. I believe that
this is one of the two key aspects of MPDATA that leads to ILES success. Conservation form
leads to important physical terms in the �nite scale governing equations essential to modelling
large-scale �ows via ILES as shown in Equation (16). Finite volume methods produce these
terms through the use of the conservation form and its presence is not a consequence of
using a high-resolution method. The high-resolution aspects of the method are essential for
the fundamental stability and physical realizability of the simulation.
In the next section we analyse existing methods for suitability as ILES methods. These

results also suggest how new methods can be designed with better properties similar to iterative
versions of the MPDATA algorithm. I then provide some computational evidence to support
the analysis.

2. ANALYSIS AND NEW METHOD DESIGN

There are several main approaches to analysing numerical methods. Fourier stability analysis is
limited to linear methods and equations. Because nonlinearity plays the key role in turbulence
and high-resolution methods are intrinsically nonlinear, linear analysis methods yield little of
value for the purposes of this study. I will adopt an approach that can examine the nonlinear
aspects of both the governing equations and the numerical method used to solve them. A major
tool in our investigation of MPDATA is modi�ed equation analysis (MEA). MEA derives
the e�ective di�erential equation solved by the numerical method. This e�ective di�erential
equation includes terms usually called truncation error terms and represents the equation that
the method actually approximates with greater accuracy than the original PDE.
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The modi�ed equation is useful for determining the physical meaning of the terms associated
with truncation error. As an example consider upwind di�erencing of

@u
@t
+ a

@u
@x
= 0 (1)

where a is greater than zero. For brevity of presentation, I will only examine spatial deriva-
tives. Upwind di�erencing produces the following discrete approximation with errors:

a
@u
@x
= a

uj − uj−1
�x

− a�x
2
@2u
@x2

+ H:O:T: (2)

The �rst term in the truncation error is second-order and di�usive like physical dissipa-
tive mechanisms and H.O.T. refers to higher order terms that have been truncated. This is
an analysis that reveals the common numerical di�usion typically associated with �rst-order
upwinding.
The basic MPDATA method is de�ned as a two-step method starting with an upwind step

ũj = unj − a�t
�x

(unj − unj−1) (3)

followed by a correction step that ‘upwinds’ the truncation error

un+1j = ũj − �t
�x
(fj+1=2 − fj−1=2); fj+1=2 =

�j+1=2
2

(ũj + ũj+1)−
∣∣�j+1=2∣∣
2

(ũj+1 − ũj) (4)

where the pseudo-velocity is based on the di�erence in truncation error between upwind and
Lax–Wendro� di�erencing (between �rst- and second-order)

�j+1=2 =
1
2

(
a− �ta2

�x

)
ũj+1 − ũj
ũj + ũj+1

(5)

I am interested in expressing the method in a form where a limiter function is de�ned. For this
purpose I will suppress the multistep form of the base MPDATA method. Next, I will assume
that our low-order method is upwinding for a¿ 0, leading to ulowj+1=2 = uj and the high-order
method is Lax–Wendro� (second-order centred di�erence without the time-accurate terms),
uhighj+1=2 = (uj + uj+1′)=2. With these steps in place, one can rearrange this method into a form
that isolates the limiter by making the observation that Equation (5) can be expressed as the
ratio of the di�erence between high- and low-order over the high-order

�j+1=2 =
1
2

(
a− �ta2

�x

)uhighj+1=2 − ulowj+1=2
uhighj+1=2

(6)

Inserting Equation (6) into Equation (4) and simplifying plus adding in the �rst step gives
an expression for a single step MPDATA scheme in cell j

uj+1=2 = ulowj+1=2 + �j+1=2(u
high
j+1=2 − ulowj+1=2) (7)

At the same edge in cell j+1 the expression is the same, but a low-order approximation
projected toward that cell edge from cell j+1 will be, ulowj+1=2 = uj+1, thus

uj+1=2 = uj+1 + �j+1=2(u
high
j+1=2 − uj+1) (8)
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where for simplicity I have dropped the time dependence. The �nal value can be determined
through applying upwind (i.e. the Riemann problem at the cell interface). This limiter can
either be applied iteratively to get higher order methods, or as the original MPDATA can be
applied repeatedly using the same high order objective value for the �ux.
This form allows us to compare the ‘limiter’ from MPDATA with similar forms from

TVD and Godunov-type methods based on monotonicity [22]. The one iteration version of
MPDATA is more dissipative than the form based on Monotone limiters, but the iterative ver-
sion of MPDATA will produce smaller dissipations for two or more iterations especially when
coupled with a higher than second-order, high-order �ux. If one simpli�es each limiter, the dif-
ference between the two forms reduces to MPDATA being approximately, �j+1=2 ≈ ulowj+1=2=uhighj+1=2

where the monotone form is �j+1=2 ≈ ulowj+1=2=(uhighj+1=2 − ulowj+1=2). I will examine a fourth-order
approximation in the following. It is interesting that the work in this meeting includes ef-
forts to bridge MPDATA to monotone methods by producing a version that has many of the
characteristics of monotone limiters [23]. Together these e�orts provide a fuller picture of
MPDATAs place among high-resolution method.
This provides the observation that MPDATA produces leading order dissipation like that

introduced by Von Neumann and Richtmyer and therefore like Smagorinsky eddy di�usion,
the original LES model. By applying MEA to a nonlinear conservation law and a single
MPDATA iteration, the leading order error is

@f
@x

≈ @f
@x

− @
@x

(
�x2

6
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(
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)2
+
�x2

6
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∣∣∣∣ @2u@x2 + �x24|u|
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)
+H:O:T:

)
(9)

As I will discuss later, it is the presence of the other terms without the absolute value
term that actually contributes most greatly to MPDATA prowess as a LES method. When
included as an explicit model this term produces a scale-similarity model and together with the
dissipative term constitutes what is known as a mixed model in the LES community. The form
of the truncation error produces a similar impact with the MPDATA method. The second key
point is that the nonlinear dissipative error with MPDATA does not interfere with the proper
scaling of dissipation in a turbulent �ow. This form will be produced for whatever MPDATA
method I use. The second truncation error term is the dispersion error. For either an iteratively
de�ned MPDATA or high-order MPDATA, the leading order nonlinear dissipative term can
be raised to higher than second-order in �x, but the conservation form of the di�erencing
assures that the �rst term is retained.
This fact can be con�rmed through putting the method into an advective form and de�ning

the truncation error. Consider second-order centred di�erencing in conservation form
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and advective form
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(
�x2

6
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)
With the advective form the term associated with scale-self-similarity does not appear in the
truncation error. This can be demonstrated through conducting the same analysis with any
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method, the conservation form results in the scale-self-similar term and the advective form
does not. I believe that this produces the scale-self-similar approach to modelling turbulence
essential to ILESs success.
As I will demonstrate below applying the MPDATA approach iteratively the leading order

nonlinear dissipation can be removed. If we begin with the form de�ned by Equation (7)
de�ning the �rst iteration, a second iteration is

u(2)j+1=2 = u
(1)
j+1=2 + �

(2)
j+1=2(u

high
j+1=2 − u(1)j+1=2); u(1)j+1=2 = u

low
j+1=2 + �

(1)
j+1=2(u

high
j+1=2 − ulowj+1=2) (10)

here the limiter in the �rst stage is de�ned as before, but the second stage limiter is

�(2)j+1=2 = 1−
∣∣∣∣∣u
high
j+1=2 − u(1)j+1=2
uhighj+1=2

∣∣∣∣∣ (11)

Similarly, a third or fourth iteration can be de�ned, each iteration getting closer to the objective
of using the high-order edge value, the general form of the nth stage iteration is

u(n)j+1=2 = u
(n−1)
j+1=2 + �

(n)
j+1=2(u

high
j+1=2 − u(n−1)j+1=2 ); �(n)j+1=2 = 1−

∣∣∣∣∣u
high
j+1=2 − u(n−1)j+1=2

uhighj+1=2

∣∣∣∣∣ (12)

As found for the original form of MPDATA [24], this process admits a compact recursive
form

u(n)j+1=2 = u
high
j+1=2 + (u

low
j+1=2 − uhighj+1=2)

∣∣∣∣∣1− ulowj+1=2
uhighj+1=2
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(
uhighj+1=2 − ulowj+1=2

uhighj+1=2

)2(n−1)

(13)

In terms of the truncation error, each subsequent iteration pushes the nonlinear dissipative term
two orders higher in �x per iteration. For example, the two iteration form of this approach
produces a nonlinear dissipative error at �x4 of the form

@
@x

(
�x4

16|u|
∣∣∣∣@u@x

∣∣∣∣ (1u @u@x
)2(@u

@x

))
(14)

I have also examined the behaviour of this method for the case where the high-order value
is replaced by a value of higher than second-order. This provides the method with greater
�exibility in achieving small truncation errors. The iterative form can be used to remove the
lower order linear errors. In this case, for a fourth-order centred high-order edge value, the
�rst iteration produces the following truncation error at leading order:

@
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�x2
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The second iteration raises this to
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)
+
1
30
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)
with the third and higher iterations leave only the leading order truncation error from the
linear high-order method.
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Another important aspect of many limiters is the property of whether the e�ect of the
limiter is nulli�ed when the �ow is resolved. Thus, in resolved regions only the high-order
method is used. For the single nonlinear correction of MPDATA, the limiter is always active
whether the �ow is resolved or not. Most of the methods that have been associated with ILES
have the property that the limiting is inactive in resolved �ows. High-resolution monotone
methods that have limiting that is always active at O(h2) such as the minmod limiter do not
make e�ective ILES methods as I discuss next [21].
When comparing MPDATA with other high-resolution methods I �nd that the scale-self-

similar and dispersion error (for second-order methods) are systematically present. For mono-
tone schemes the dissipative terms are di�erent in form, for example with the minmod limiter

@
@x

(
�x2

4

∣∣∣∣@f@u
∣∣∣∣ |@u=@x@2u=@x2|

@u=@x
+ · · · (15)

di�ering from the Smagorinsky-like MPDATA term at O(h2). Other monotone limiters are
completely inactive if the �ow �eld is resolved and the leading order dissipative terms is at
O(h3) and does not interfere with the control volume term at second-order (the PLM method
based on Fromm’s method used in the next section is an example).
The key to understanding the di�erences in the methods is the energy analysis that shows

how energy will scale in a computed �ow. The analysis proceeds by forming an energy
through multiplying the equation by u (the energy is 1=2u2) then integrating the modi�ed
equation over control volumes and applying integration by parts [21, 25]. Terms that retain
conservation form do not contribute to the energy evolution on the average. The dispersion
term conserves energy and does not change the energy content of the �uid. The scale self-
similar term is not in conservation form and produces the correct scaling for turbulence and
shocks 〈

d(1=2u2)
dt

〉
∝�x2

〈
@f
@u

(
@u
@x

)3〉
(16)

and depends on the asymmetry of the �eld (and stable computation as well) to produce a
dissipative result. The angled brackets denote the averaging over the domain of interest. The
dissipation in MPDATA produces a positive-de�nite dissipation that also matches the scaling
in theory without depending on the details of the computed �eld,〈

d(1=2u2)
dt

〉
∝�x2

〈∣∣∣∣@u@x
∣∣∣∣ (@u@x

)2〉
(17)

Monotone limiters produce a result and scaling that is not consistent with theoretical expec-
tations 〈

d(1=2u2)
dt

〉
∝�x2

〈∣∣∣∣@u@x
∣∣∣∣ ∣∣∣∣@2u@x2

∣∣∣∣〉 (18)

Equation (18) is the key to understanding why some high-resolution methods do not perform
well as ILES.
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3. COMPUTATIONAL EVIDENCE

The goal of this section is to provide computational support for the analysis in the preceding
section of the paper. I will examine three di�erent high-resolution methods: the MPDATA
method using a second nonlinear iteration, the minmod limiter TVD method, and the lim-
ited Fromm TVD method. These results will clearly demonstrate the relative character of
each method especially related to the computation of turbulent �ows via the ILES approach.
The results are consistent with the expectations resulting from the analysis in the previous
section.

3.1. Veri�cation: Riemann invariant

I begin the comparisons using a simple �ow that has analytically de�ned initial conditions,
and through nonlinear dynamics produces ever smaller and, ultimately, unresolvable scales.
The �ow is a one-dimensional case of acoustic wave breaking. This problem was introduced
by Cook and Cabot [26] consisting of an initial condition having signal content in a single
Riemann invariant. The initial �ow is con�ned to a single wave family, and the other charac-
teristics carry no information until the shock forms. Our calculations are patterned after Cook
and Cabot with a comparison shown at a time that is 75% of the time required for a shock
to form. The solution remains analytic at that time and the exact solution is available for
comparison. I use a grid of 64 uniformly spaced zones in our calculations.
The comparison of the three methods is shown in Figure 1. The upper frame shows the

computed spectra for each method. Interestingly, the minmod and limited Fromm method break
from the analytic spectrum in a nonmonotonic manner. MPDATA on the other hand, falls from
the analytical spectrum in a smooth fashion. As the lower frame demonstrates, the magnitude
of the error with the minmod limiter greatly exceeds that associated with the other �ows
especially in the highest wavenumbers. Moreover, the overly dissipative behaviour of minmod
in medium wavenumbers results in an under dissipative result for the highest wavenumbers.
In contrast both MPDATA and limited Fromm show their strongest dissipation at the grid
resolution limit, an attractive character for a method. For this problem and the simulation in
the following subsection a more extensive comparison of MPDATA using di�erent numbers
of nonlinear iterations is given in a recent paper [25]. The results in that paper strongly
indicate that MPDATA improves signi�cantly as the number of iterations is taken to three
and slightly more with four iterations. These results will lay the groundwork for considering
a full-�edged turbulent �ow as is shown next.

3.2. Validation: decaying turbulent �ow

Next, I will simulate an experiment by Kang et al. [27] utilising the high quality data is
available. The decay of isotropic turbulence is an essential benchmark �ow for turbulence.
The classical experiment of decaying turbulence was conducted by Comte–Bellot–Corrsin and
is often used to test turbulence models. Recently a group at John Hopkins University has
conducted a similar experiment, but at a much larger Reynolds’ number [27]. In the John
Hopkins’ experiment, a wind tunnel was utilized with an active grid to produce a decaying
(nearly) isotropic turbulent �eld with an initial Taylor microscale Reynolds number in excess
of 700. Along the length of the wind tunnel four stations with X-wire probes produced
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Figure 1. The comparison of the spectral behaviour of the three methods is shown in the upper frame.
The relative spectral error is shown in the lower frame.

measurements of the �ow �eld. These stations were placed at x=M =20; 30; 40, and 48 where
x is the downstream position and M is the spacing of the grid.
I will use several of the published measurements as a means of comparison between the

simulations and the experiment. These measurements include the kinetic energy of the �ow,
the longitudinal velocity increments, and the transverse velocity increments. These are derived
from the experimental data �ltered at di�erent length scales. Our initial condition is taken from
the conditions given in Reference [27] and time is measured using the �ow velocity through
the relation, x=Ut where U is the downstream velocity in the experiment. The data plotted
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Figure 2. The plot shows a comparison of kinetic energy decay between the experiment and simulation.
The kinetic energy levels and times have been normalized to refer to the same dimensionless time.
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Figure 3. The three-dimensional energy spectra are shown for each of the methods used at
x=M =48. The spectra behave in the same manner as the experimentally measured spectra. The
three methods are similar in the low wavenumber region. There are signi�cant di�erences in the

manner in which the spectrum behaves at high wavenumbers (k¿15).
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Figure 4. The PDFs of the computed and experimental velocity increments are compared in this
�gure. The experimentally measured PDFs are quite well reproduced by the ILES methods. This

includes the magnitude of the velocity increments in the tails of the PDF.

as the experimental PDFs of the velocity increments can be found online at the website for
the Johns Hopkins turbulence research group.
All of my simulations employed a grid of 643. Figure 2 shows the decay of kinetic en-

ergy computed with our methods compared with the experiment. The limited Fromm (PLM)
method produces a good comparison with the experimentally observed energy decay. Both
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MPDATA and especially the minmod method are too dissipative on the grid utilized here. The
comparison of the simulated power spectra is shown in Figure 3. This measure compliments
the kinetic energy comparison with the absolute magnitude of the spectrum at low wave num-
bers paralleling the total energy content computed with each method. At high wave numbers
the results with each method are somewhat di�erent with MPDATA showing the shallowest
decay. The minmod method begins to decay strongly at a relatively low wavenumber as might
be predicted from the numerical analysis of the method.
In Reference [27] LES comparisons of velocity increments have shown good agreement

with the small increments while not capturing the tails of the distribution. This indicates that
the simulations do not show the proper intermittency as the data. For our simulations we
compute the velocity increments using backward di�erences. We then construct the PDFs
from these di�erences. The longitudinal velocity increments are ui(xi +�xi)− ui(xi), and the
transverse velocity increments are ui(xj +�xj)− ui(xj), for i �= j. With ILES simulations we
�nd that the intermittency is quite well reproduced in both the longitudinal and transverse
velocity increments. We display the comparison between the experiment and simulations in
Figure 4. It is important for the reader to note that the experimental data that I compare
with has been �ltered with a narrower width �lter than that shown in earlier comparisons.
These results seem to indicate that ILES methods are e�ective in both simulating the mean
behaviour of classical turbulence as well as a superior capability in capturing the turbulence’s
intermittency.
Despite this generally good behaviour there are di�erences between the three methods. The

minmod method computes the least intermittent �ow consistent with other �ducials. Interest-
ingly the MPDATA method compares favourably with the two other methods in the tails of
the PDFs. This is despite its more dissipative nature compared with PLM. One could con-
clude that the reason for the good behaviour of MPDATA is the lack of a monotonicity-based
limiter that allows better preservation of high-wavenumber �ow structures.

4. CONCLUDING REMARKS

Given the available evidence I conclude that MPDATA works for ILES for two reasons: its
use of the conservation form, and the nonlinear dissipation that is consistent with
observed turbulent �ow (and accepted theory). The relatively low order O(h2) dissipation
in the base MPDATA algorithm matches the di�erential form found in turbulent models. This
term matches the �nite scale terms mod the positive-de�nite nature of the dissipation. Other
lower-order high-resolution methods do not have this type of dissipation. I have hypothesized
that the di�erent O(h2) dissipation in the other methods is the key di�erence. Through our
combined experience with MPDATA and other high-resolution methods, I further hypothe-
size that conservation form is essential, and the nonlinear dissipation must either match the
observed form, or not interfere with the terms associated with conservation form. This lack
of interference can also be achieved by having the nonlinear dissipation work at higher than
second-order. Each of these hypotheses is supported by the calculations shown in the previous
section.
The analysis shows that this form of the leading order error can be removed through the use

of the iterative form of the algorithm. While MPDATA is sign-preserving, the form of the
e�ective limiter does not match sign-preserving methods based on monotonicity-preserving
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methods. Through the use of higher order di�erencing, coupled with the iterative form of
MPDATA more e�ective methods can be found. These forms share the property of having
the nonlinear dissipative mechanisms associated with limiters be completely inactive should
the �ow be resolved. This appears to be a highly desirable property for a high-resolution
method to exhibit.
MPDATA shows the value of both methodological diversity as well as rigorous asymp-

totic analysis in uncovering the basic properties of both speci�c and categories of numerical
methods.
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